Covariate conscious approach for Gait recognition based upon Zernike moment invariants

نویسندگان

  • Himanshu Aggarwal
  • Dinesh K. Vishwakarma
چکیده

— Gait recognition i.e. identification of an individual from his/her walking pattern is an emerging field. While existing gait recognition techniques perform satisfactorily in normal walking conditions, there performance tend to suffer drastically with variations in clothing and carrying conditions. In this work, we propose a novel covariate cognizant framework to deal with the presence of such covariates. We describe gait motion by forming a single 2D spatio-temporal template from video sequence, called Average Energy Silhouette image (AESI). Zernike moment invariants (ZMIs) are then computed to screen the parts of AESI infected with covariates. Following this, features are extracted from Spatial Distribution of Oriented Gradients (SDOGs) and novel Mean of Directional Pixels (MDPs) methods. The obtained features are fused together to form the final well-endowed feature set. Experimental evaluation of the proposed framework on three publicly available datasets i.e. CASIA dataset B, OU-ISIR Treadmill dataset B and USF Human-ID challenge dataset with recently published gait recognition approaches, prove its superior performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study on Using Zernike Velocity Moments and Hidden Markov Models for Hand Gesture Recognition

Hand-gesture recognition presents a challenging problem for computer vision due to the articulated structure of the human hand and the complexity of the environments in which it is typically applied. Solving such a problem requires a robust tracking mechanism which in turn depends on an effective feature descriptor and classifier. Moment invariants, as discriminative feature descriptors, have b...

متن کامل

Fingerprint Recognition Using Zernike Moments

In this paper, we present a fingerprint matching approach based on localizing the matching regions in fingerprint images. The determination of the location of such Region Of Interest (ROI) using only the information related to core points based on a novel feature vectors extracted for each fingerprint image by Zernike Moment Invariant (ZMI) as the shape descriptor. The Zernike Moments is select...

متن کامل

A New Class of Rotational Invariants Using Discrete Orthogonal Moments

This paper presents a new class of Tchebichef moments in polar coordinate form, using which rotational invariants can be easily constructed. The structure of the invariants is very similar to that of Zernike and Pseudo-Zernike moments, and their computation does not involve discrete approximation of continuous integral terms. The invariants are thus very robust in the presence of image noise, a...

متن کامل

On the inverse problem of rotation moment invariants

Numerous papers have been devoted to the moment invariants (MI). They usually describe their derivation, various invariant properties, numerical behavior, and their power to serve as the features in many pattern recognition tasks. Only few papers have dealt with the independence and completeness of the sets of MI’s. However, both these properties are of fundamental importance from theoretical a...

متن کامل

Sajad Farokhi , Siti Mariyam Shamsuddin , Jan Flusser , Usman Ullah Sheikh Assessment of Time - Lapse in Visible and Thermal Face Recognition

Although face recognition seems as an easy task for human, automatic face recognition is a much more challenging task due to variations in time, illumination and pose. In this paper, the influence of time-lapse on visible and thermal images is examined. Orthogonal moment invariants are used as a feature extractor to analyze the effect of time-lapse on thermal and visible images and the results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.06683  شماره 

صفحات  -

تاریخ انتشار 2016